Графическое решение неравенств, системы совокупностей неравенств с двумя переменными


Пусть f(x,y) и g(x, y) – два выражения с переменными х и у и областью определения Х. Тогда неравенства вида f(x, y) > g(x, y) или     f(x, y) < g(x, y) называется неравенством с двумя переменными.


Значение переменных х, у из множества Х, при которых неравенство обращается в истинное числовое неравенство, называется его решением и обозначается (x, y). Решить неравенство – это значит найти множество таких пар.


Если каждой паре чисел (x, y) из множества решений неравенства поставить в соответствие точку М(x, y), получим множество точек на плоскости, задаваемое этим неравенством. Его называют графиком данного неравенства. График неравенства обычно является областью на плоскости.


Чтобы изобразить множество решений неравенства f(x, y) > g(x, y), поступают следующим образом. Сначала заменяют знак неравенства знаком равенства и находят линию, имеющую уравнение f(x,y) = g(x,y). Эта линия делит плоскость на несколько частей. После этого достаточно взять в каждой части по одной точке и проверить, выполняется ли в этой точке неравенство f(x, y) > g(x, y). Если оно выполняется в этой точке, то оно будет выполняться и во всей части, где лежит эта точка. Объединяя такие части, получаем множество решений.


Задача. Решить графически неравенство y > x.


Графическое решение неравенств, системы совокупностей неравенств с двумя переменнымиРешение. Сначала заменим знак неравенства знаком равенства и построим в прямоугольной системе координат линию, имеющую уравнение y = x.


Эта линия делит плоскость на две части. После этого возьмем в каждой части по одной точке и проверим, выполняется ли в этой точке неравенство y > x.


Задача. Решить графически неравенство
х2 + у2 £ 25.

















Рис. 18.


 
Графическое решение неравенств, системы совокупностей неравенств с двумя переменнымиПодпись: Рис. 17.Решение. Сначала заменим знак неравенства знаком равенства и проведем линию х2 + у2 = 25. Это окружность с центром в начале координат и радиусом 5. Полученная окружность делит плоскость на две части. Проверяя выполнимость неравенства        х2 + у2 £ 25 в каждой части, получаем, что графиком является множество точек окружности и части плоскости внутри окружности.


Пусть даны два неравенства f1(x, y) > g1(x, y) и  f2(x, y) > g2(x, y).


Системы совокупностей неравенств с двумя переменными


Система неравенств представляет собой конъюнкцию этих неравенств. Решением системы является всякое значение (x, y), которое обращает каждое из неравенств в истинное числовое неравенство. Множество решений системы неравенств есть пересечение множеств решений неравенств, образующих данную систему.


Совокупность неравенств представляет собой дизъюнкцию этих неравенств. Решением совокупности является всякое значение (x, y), которое обращает в истинное числовое неравенство хотя бы одно из неравенств совокупности. Множество решений совокупности есть объединение множеств решений неравенств, образующих совокупность.


Задача. Решить графически систему неравенств Графическое решение неравенств, системы совокупностей неравенств с двумя переменными


Графическое решение неравенств, системы совокупностей неравенств с двумя переменнымиРешение. Сначала заменяем знак неравенства знаком равенства и проводим в одной системе координат линии у = х и х2 + у2 = 25. Решаем каждое неравенство системы.


Подпись: Рис. 19.Графиком системы будет множество точек плоскости, являющихся пересечением (двойная штриховка) множеств решений первого и второго неравенств.


Задача. Решить графически совокупность неравенств Графическое решение неравенств, системы совокупностей неравенств с двумя переменными


Подпись: Рис. 20.Графическое решение неравенств, системы совокупностей неравенств с двумя переменными















у


 
Решение. Сначала заменяем знак неравенства знаком равенства и проводим в одной системе координат линии у = х + 4 и х2 + у2 = 16. Решаем каждое неравенство совокупности. Графиком совокупности будет множество точек плоскости, являющихся объединением множеств решений первого и второго неравенств.


 


Упражнения для самостоятельной работы


1. Решите графически неравенства:  а) у > 2x;   б) у < 2x + 3;      


в) x2 + y2 > 9;    г) x2 + y2 £ 4.


2. Решите графически системы неравенств:


а) Графическое решение неравенств, системы совокупностей неравенств с двумя переменными                в) Графическое решение неравенств, системы совокупностей неравенств с двумя переменными


б) Графическое решение неравенств, системы совокупностей неравенств с двумя переменными               г) Графическое решение неравенств, системы совокупностей неравенств с двумя переменными


3. Решите графически совокупности неравенств:


а) Графическое решение неравенств, системы совокупностей неравенств с двумя переменными                 в) Графическое решение неравенств, системы совокупностей неравенств с двумя переменными


б) Графическое решение неравенств, системы совокупностей неравенств с двумя переменными               г) Графическое решение неравенств, системы совокупностей неравенств с двумя переменными





Просмотров 20925 Комментариев 0
Познавательно:
Скажи свое мнение:
Добавить комментарий
Имя:* E-Mail:*

Вопрос:
1+1=
Ответ:*
Введите два слова, показанных на изображении: *